| Name: | | Section: | | | | |--|---------------------------------|---------------|---|-----------------|--| | Data and Calculations | | | | | | | Part 1 | | | | | | | Diameter: cm | Radius: | cm | Height (cylinder part): | cm | | | Volume (cylinder part): SHOW CALCULATION | ON: | Volumo
SHO | e (half-sphere part):
W CALCULATION: | cm ³ | | | | 3 | | | | | | Total Volume (sum): | cm ³ | Volum | e (graduated cylinder): | mL | | | Average Volume:SHOW CALCULATION | | | Difference: % W CALCULATION: | | | | <u>Part 2</u> | | | | | | | Mass of Metal Cylinder | | _ | | | | | Diameter | Length | | Volume calipers | | | | Volume _{water} | Volume _{metal + water} | | Volume water displacement | | | | Density of the Cylinder: | calipers: | | water displacement: | | | | Handbook Density | | | | | | | Identity of Metal | | | | | | | % Error: | calipers: | | water displacement: | | | | SHOW CALCULATION | NS: | | | | | | Nar | me: | | | Section | n: | | | |----------------------------|-------------------------------------|----------------------------|--------------------------------|------------------------|------------------------------------|---|----------------| | <u>Par</u> | <u>t 3</u> | | | | | | | | Mass of Flask with stopper | | | | Initial Buret reading | | | | | ample | Mass
Flask+Stopper+Liquid
(g) | Mass
Liquid Only
(g) | Final Buret
Reading
(mL) | Net
Volume
(mL) | Density (xm) (g / mL) 4 sig. figs. | $\begin{array}{c} d \\ (x_m - \bar{x}) \end{array}$ | \mathbf{d}^2 | | 1 | | | | | | | | | 2 | | | | | | | | | 3 | | | | | | | | | 4 | | | | | | | | | 5 | | | | | | | | | 6 | | | | | | | | | | | | | sum of x _r | m: | sum of d ² : | | | Sho | w your calculation o | f the standa | rd deviation s | from d ² be | low: | L | | | | on your carculation o | i die stairea | ra de viación, s, | | 10 | Mean value (\bar{x}) : Range: Standard Deviation (s): % NaCl from Table: _____ | Na | Name: | Section: | |------------|--|---------------------------------------| | Po | Post-lab Questions | | | 1. | Calculate the density of a pure gold sphere with
94.19 g. | a diameter of 2.120 cm and a mass of | | 2 | 2. The density of above in 2.70 c/cm ³ . Calcula | | | 2. | 2. The density of aluminum is 2.70 g/cm ³ . Calculated of aluminum foil with a width of 11.5 cm, a leng | | | 3. | Examine your results from your data table in P | art 3. Do you have any values for the | | <i>3</i> . | density of the salt solution that lie OUTSIDE the | • | | | Recalculate \bar{x} by omitting values that lie OUTSI you should use to determine your experimental \bar{x} | | | | | | | Name: | Section: | |-------|----------| | | | ## **Pre-lab Questions** Upon reading the procedure in preparation for this experiment, you should also answer the following questions: 1. Consider Example One in the laboratory discussion. Since measurement 8 lies outside the range, it may be omitted in the calculation of the reported value. Omit measurement 8 and recalculate the mean (\bar{x}) . Fill in the d and d^2 columns in the table, then calculate the standard deviation (s) and the range. Recalculated mean (\bar{x}) , without measurement 8: | Balance Number | $Mass (g) = x_m$ | $\mathbf{d} = \mathbf{x_m} - \overline{\mathbf{x}}$ | \mathbf{d}^2 | |-------------------------|------------------|---|----------------| | 1 | 24.29 | | | | 2 | 24.26 | | | | 3 | 24.17 | | | | 4 | 24.31 | | | | 5 | 24.28 | | | | 6 | 24.19 | | | | 7 | 24.33 | | | | 8 – OMITTED | 24.50 | | | | 9 | 24.30 | | | | 10 | 24.23 | | | | sum of x _m : | | sum of d ² : | | | Recalculated standard deviatiation (s): | and range: | |---|------------| |---|------------| ## SHOW CALCULATIONS: - 2. Now consider Example Two in the laboratory discussion. The student doing the titration repeated the experiment twice more. The following five values were obtained: 0.555 M, 0.565 M, 0.564 M, 0.567 M, and 0.563 M. - A. Use the *Q Test* to demonstrate that the first value should be rejected. - B. Recalculate the values for \bar{x} , omitting the value 0.555 M. Compare with the original value of \bar{x} .