Option Fe: Pre-lab Calculations for the Iron Based Experiment:

1. Calculate the molar mass of the starting hydrated salt material, FeSO₄·7H₂O.

2. Your oxalate synthesis product will be $FeC_2O_4 \cdot 2H_2O$. Calculate the molar mass of $FeC_2O_4 \cdot 2H_2O$.

3. Write a balanced molecular equation that shows your FeSO₄·7H₂O, reacting with oxalic acid ($H_2C_2O_4$) to form FeC₂O₄·2H₂O. What will be the other product(s) of the double displacement reaction? Water will need to be added somewhere to balance correctly.

4. Pyrolysis of FeC₂O₄·2H₂O will follow one of the following molecular equations. Balance each molecular equation. (It's OK to keep a fraction when balancing the O₂ molecule in A or B)

$$A. \hspace{0.5cm} FeC_2O_4 \cdot 2H_2O(s) \hspace{0.1cm} + \hspace{0.5cm} O_2(g) \hspace{0.1cm} \rightarrow \hspace{0.1cm} FeO(s) \hspace{0.1cm} + \hspace{0.1cm} H_2O(g) \hspace{0.1cm} + \hspace{0.1cm} CO_2(g)$$

$$B. \qquad FeC_2O_4 \cdot 2H_2O(s) \ + \qquad O_2(g) \ \to \qquad Fe_2O_3(s) \ + \qquad H_2O(g) \ + \qquad CO_2(g)$$

$$C. \qquad \text{FeC}_2\text{O}_4 \cdot 2\text{H}_2\text{O}(s) \qquad \qquad \rightarrow \qquad \text{FeCO}_3(s) \ + \quad \text{H}_2\text{O}(g) \ + \qquad \text{CO}(g)$$

Name:	Section:

5. For each of the possible reactions, calculate the theoretical yield (in grams) of the solid product, assuming that you use $1.0~g~FeC_2O_4\cdot 2H_2O$ and that oxygen is the excess reactant. You will need to write in coefficients from question 4 to balance the molecular equations.

A.
$$FeC_2O_4 \cdot 2H_2O(s) + O_2(g) \rightarrow FeO(s) + H_2O(g) + CO_2(g)$$

B.
$$FeC_2O_4 \cdot 2H_2O(s) + O_2(g) \rightarrow Fe_2O_3(s) + H_2O(g) + CO_2(g)$$

C.
$$FeC_2O_4 \cdot 2H_2O(s)$$
 \rightarrow $FeCO_3(s) + H_2O(g) + CO(g)$

Option Mn: Pre-lab calculations for the Manganese based experiment:

1. Calculate the molar mass of the starting hydrated salt material, MnSO₄·H₂O.

2. Your oxalate synthesis product will be $MnC_2O_4\cdot 3H_2O$. Calculate the molar mass of $MnC_2O_4\cdot 3H_2O$

3. Write a balanced molecular equation that shows $MnSO_4 \cdot H_2O$, reacting with oxalic acid $(H_2C_2O_4)$ to form $MnC_2O_4 \cdot 3H_2O$. What will be the other product(s) of the double displacement reaction? Water will need to be added somewhere to balance correctly.

4. Pyrolysis of MnC₂O₄·3H₂O will follow one of the following molecular equations. Balance each molecular equation. (It's OK to keep a fraction when balancing the O₂ molecule in A or B.)

A.
$$MnC_2O_4 \cdot 3H_2O(s) + O_2(g) \rightarrow MnO(s) + H_2O(g) + CO_2(g)$$

$$B. \qquad MnC_2O_4 \cdot 3H_2O(s) \ + \qquad O_2(g) \ \to \qquad Mn_3O_4(s) \ + \quad H_2O(g) \ + \qquad CO_2(g)$$

C.
$$MnC_2O_4 \cdot 3H_2O(s)$$
 \rightarrow $MnCO_3(s) + H_2O(g) + CO(g)$

Name:	Section:
-------	----------

5. For each of the possible reactions, calculate the theoretical yield (in grams) of the solid product, assuming that you use $1.0~g~MnC_2O_4\cdot 3H_2O$ and that oxygen is the excess reactant. You will need to write in coefficients from question 4 to balance the molecular equations.

A.
$$MnC_2O_4 \cdot 3H_2O(s) + O_2(g) \rightarrow MnO(s) + H_2O(g) + CO_2(g)$$

B.
$$MnC_2O_4 \cdot 3H_2O(s) + O_2(g) \rightarrow Mn_3O_4(s) + H_2O(g) + CO_2(g)$$

C.
$$MnC_2O_4 \cdot 3H_2O(s)$$
 \rightarrow $MnCO_3(s) + H_2O(g) + CO(g)$

Dow	1. Crimthodia of Matal Ovalata	
	1: Synthesis of Metal Oxalate ermine the identity of the limiting reactant, theoretical y	yield of the hydrated metal
	ate, and the percent yield of the hydrated metal oxalate pro	-
01100	into the personal free or the rift armies income continue pro	owen compress ruess r
Tab	le 1. Synthesis of Metal Oxalate	
a)	complete chemical formula of your starting material:	
	(formula found on question 1)	
h)	mass of hydrated metal salt used (g)	
0)	tare your 100 ml beaker and add 1.9-2.1g sample	
	G. T.	
c)	moles of hydrated metal salt used	
	convert grams from (b) using molar mass in question 1	
4)	volume of 0.888M oxalic acid solution used	
u)	should be close to 25.0mL	
	shows to close to const	
e)	moles of oxalic acid used	
	calculate from volume and molarity	
	C C'1	
f)	mass of filter paper	
g)	experimental yield: total mass of hydrated metal oxalate	
	precipitate (grams) after drying by vacuum filtration.	
011		
	ter paper + salt mass: subtract the filter paper	
h)	identify the limiting reactant: either your starting formula in part (a) or oxalic acid	
	Refer to the balanced chemical equation in pre-lab quest.	
	#3 and your moles of each reactant calculated in c and e	
i)	theoretical yield of hydrated metal oxalate product (g)	
j)	percent yield of hydrated metal oxalate product	

Calculations: Show your calculations. Watch your units and report all answers with the

Section:

Name: _____

Data and Calculations

correct number of significant figures.

Name:		Section:
Data and C	alculations	
Part 2: Deco	omposition (Pyrolysis) of Metal Oxalat	re
		$\frac{2}{2}$ with near 100% yield, so the actual yield
of the pyroly	ysis reaction should be very close to the	e theoretical yield you calculated for the
correct react	tion equation (as calculated in Question	n #5 of the prelab).
Table 2 Pv	rolysis of Metal Oxalate	
	the empty Aluminum dish before	adding the
	product.	
	pyrolysis: mass of hydrated metal oxal	late (grams)
Таеану	between 0.99 to 1.01 gram	
Al + oxalat	te salt mass: subtrac	t the Al dish
c) After p	yrolysis: final mass of pyrolysis produc	ct (grams)
A1 . 1	1 1	
		t the Al dish
· /	ical mass of product in reaction A relab (quest. #5A):	
1 TOILI pi	relab (quest. #3A).	
e) theoreti	cal mass of product in reaction B	
From p	relab (quest. #5B):	
f) the emati	and many of any dust in many tion C	
	ical mass of product in reaction C relab (quest. #5C):	
Trom pr	iciao (quest. 1150).	
	the above information, which pyrolys	sis reactions
actually	occurred, A , B or C ?	
h) What is	s the expected chemical formula of the	e pyrolyzed
metal sa	alt formed?	

<u>Calculations</u>: Refer to your work from prelab Question #5 from your option. Watch your units and report all answers with the correct number of significant figures.